Journal of Thermal Analysis and Calorimetry, Vol. 64 (2001) 1087–1093

REACTIVITY IN THE SOLID STATE BETWEEN Ag₂S AND Ag₂CrO₄

E. Tomaszewicz and M. Kurzawa

Department of Chemistry and Environment Protection, Technical University of Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland

Abstract

Reactivity, in the solid state between Ag₂S and Ag₂CrO₄, was investigated by DTA, XRD and IR methods. It was found that, according to a composition of an initial Ag₂S/Ag₂CrO₄ mixture, the products of a reaction of Ag₂S with Ag₂CrO₄ can be: solid solution with Ag₂CrO₄ structure (Ag₂Cr_{1-x}S_xO₄) and AgCrO₂; or solid solution Ag₂Cr_{1-x}S_xO₄, Ag₂SO₄, AgCrO₂ and metallic silver; or Ag₂S, β -Ag₈S₄O₄, Ag, AgCrO₂, Ag₂CrO₄ and Ag₂Cr_{1-x}S_xO₄ solid solution.

Keywords: DTA, IR, silver chromate(VI), silver sulfide, XRD

Introduction

Our earlier studies on the reactivity in the solid state between Ag_2S and Ag_2SO_4 showed that both reagents enter into reaction to give two phases: β - $Ag_6S_3O_4$ and β - $Ag_8S_4O_4$ [1–4]. These compounds had not been known in the literature before. β - $Ag_6S_3O_4$ is formed by heating in air atmosphere Ag_2S and Ag_2SO_4 mixed at the molar ratio 2:1 according to the following reaction [1, 2, 4]:

$$2Ag_{2}S_{(s)} + Ag_{2}SO_{4(s)} = \beta - Ag_{6}S_{3}O_{4(s)}$$
(1)

 β -Ag₈S₄O₄, the second phase occurring in the Ag₂S-Ag₂SO₄ system, is formed as a result of the reaction between Ag₂S and Ag₂SO₄, at the molar ratio of the reagents – 3:1 [3, 4]:

$$3Ag_2S_{(s)} + Ag_2SO_{4(s)} = \beta - Ag_8S_4O_{4(s)}$$
 (2)

In the light of above information it deemed advisable to ascertain whether silver chromate(VI), the phase crystallizes just the same as silver sulfate(VI) in orthorhombic system (space group – Pnma, a=1.0063(11) nm; b=0.7029(4) nm; c=0.5540(2) nm; Z=4 [5]), could form similar compounds.

1418–2874/2001/ \$ 5.00 © 2001 Akadémiai Kiadó, Budapest Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht

Experimental

The following reagents were used for experiments: pure Ag_2S (POCh, Gliwice, Poland) and Ag_2CrO_4 (a precipitate obtained as a result of the reaction between Ag^+ and CrO_4^{2-} , filtered, washed and dried at 110°C for 24 h). The mixtures of Ag_2S with Ag_2CrO_4 were prepared with a range of silver sulfide from 10.00 to 90.00 mol%. These mixtures were heated in air, in the following cycles: 250 (8 h); 300 (8 h); 350 (8 h); 400 (8 h); 450 (8 h); 475 (8 h); 525 (2×8 h); 550°C (13 h). After each heating cycle the samples were gradually cooled to ambient temperature, weighed, ground and examined for their contents by XRD method and then heated again. After the final heating cycle, the samples were examined by DTA and IR methods. The DTA examinations were made by using a TA Instruments SDT 2960 apparatus. These measurements were carried out in air, at the heating rate of 10 K min⁻¹. X-ray diffraction phase analysis of the samples was performed by a diffractometer DRON-3 using CoK_{α} radiation (λ =0.179021 nm). The IR spectra were recorded on a Specord M-80 spectrometer (Carl Zeiss Jena).

Results and discussion

Table 1 shows the contents of the initial mixtures of Ag_2S with Ag_2CrO_4 and results of XRD analysis of samples obtained after the final heating cycle. Mass change investigations show mass increases for the samples obtained by heating initial mixtures comprising initially to 70.00 mol% of Ag_2S and mass decreases of the samples, the initial mixtures of which contained over 70 mol% of Ag_2S .

 Table 1 Contents of initial mixtures and results of XRD analysis of samples obtained after the final heating cycle

No.	Ag ₂ S content in initial mixtures/mol%	Phase identified
1	10.00; 20.00; 30.00; 40.00	$Ag_2Cr_{1-x}S_xO_4$; $AgCrO_2$
2	50.00; 60.00; 66.67; 70.00; 75.00; 80.00	$Ag_2Cr_{1-x}S_xO_4$; Ag_2SO_4 ; $AgCrO_2$; Ag
3	90.00	$Ag_2S; \beta$ - $Ag_8S_4O_4; Ag; AgCrO_{2(traces)}$

The data of Table 1 and the results of mass change studies point out that Ag_2S and Ag_2CrO_4 are not mutually inert in air. It was found that, at the concentration range to 40.00 mol% of Ag_2S , the products of reaction between Ag_2S and Ag_2CrO_4 are solid solution with Ag_2CrO_4 structure ($Ag_2Cr_{1-x}S_xO_4$) and $AgCrO_2$. The result of solid solution formation is moving the position of diffraction lines, recorded on diffraction patterns of the samples obtained by heating the Ag_2S/Ag_2CrO_4 mixtures, in comparison with the position of diffraction lines for pure Ag_2CrO_4 (Fig. 1).

At the concentration range from 40.00 to 90.00 mol% of Ag_2S it was found that three solid phases, i.e. $Ag_2Cr_{1-x}S_xO_4$ solid solution, $AgCrO_2$ and metallic silver (Table 1), occurred in the samples on treatment.

Fig. 1 Dependence of interplanar distances on Ag₂S concentration in initial Ag₂S/Ag₂CrO₄ mixtures for four diffraction lines: d=0.2879 nm – pure Ag₂CrO₄ (*hkl* 2 2 0) (a); d=0.2870 nm – pure Ag₂CrO₄ (*hkl* 2 1 1) (b); d=0.2844 nm – pure Ag₂CrO₄ (*hkl* 2 1 1) (c); d=0.2769 nm – pure Ag₂CrO₄ (*hkl* 0 0 2) (d)

XRD measurements of the sample, obtained by heating the mixture comprising initially 90.00 mol% of Ag_2S , showed the presence of four solid phases, i.e. Ag_2S , metallic silver, β -Ag₈S₄O₄ and traces of AgCrO₂.

Figure 2 shows DTA curves for the samples obtained after the last heating cycle of Ag_2S/Ag_2CrO_4 mixtures comprising initially 10.00, 20.00, 30.00 and 40.00 mol% of Ag_2S as well as, for comparison purposes, DTA curves for pure Ag_2CrO_4 and an equimolar Ag_2CrO_4/Ag_2SO_4 mixture. DTA curves of the samples obtained after heating the mixtures comprising initially 50.00 and 90.00 mol% of Ag_2S are shown in Fig. 3.

The endothermic effect recorded on the DTA curve of the equimolar Ag_2CrO_4/Ag_2SO_4 mixture at 426°C (Fig. 2b) is characterised by polymorphic transition of Ag_2SO_4 [6, 7]. The second endothermic effect, with its onset at 480°C, is due to polymorphic transition of Ag_2CrO_4 [8, 9]. The last endothermic effect starting at 665°C is associated with the melting of the Ag_2CrO_4/Ag_2SO_4 mixture. On each DTA curve of the samples obtained after heating Ag_2S/Ag_2CrO_4 mixtures (Figs 2c–2f) two endothermic effects were recorded. The first effects starting at: 445°C (curve c), 405°C (curve d), 367°C (curve e) and 326°C (curve f), are associated with polymorphic transition of $Ag_2Cr_{1-x}S_xO_4$ solid solution. The second effects with their onset at: 662°C (curve c), 659°C (curve d), 658°C

Fig. 2 DTA curves for Ag₂CrO₄ (a), an equimolar Ag₂CrO₄/Ag₂SO₄ mixture (b) and the samples obtained after the final heating cycle of Ag₂S/Ag₂SO₄ mixtures comprising initially 10.00 (c), 20.00 (d), 30.00 (e) and 40.00 mol% of Ag₂S (f)

(curves e and f) correspond to melting $Ag_2Cr_{1-x}S_xO_4$ solid solution. The appearance of solid solution (Ag_2SO_4 in Ag_2CrO_4) resulted in reducing temperature of polymorphic transition (Δt_{max} =155°C) and melting point (Δt_{max} =8°C) of $Ag_2Cr_{1-x}S_xO_4$ in comparison with the temperature of polymorphic transition and melting point of pure Ag_2CrO_4 , respectively.

On the DTA curve of the sample obtained after heating the mixture composed of 50.00 mol% of Ag₂S and 50.00 mol% of Ag₂CrO₄ (Fig. 3) three effects were recorded. The endothermic effects with their onset at 367 and 653°C, are associated with polymorphic transition and melting solid solution Ag₂Cr_{1-x}S_xO₄, respectively. Additional studies are necessary for determining a reason for the appearance of the exothermic effect starting at 324°C (Fig. 3).

J. Therm. Anal. Cal., 64, 2001

1090

Fig. 3 DTA curves of the sample obtained after the last heating cycle of the mixtures comprising initially 50.00 mol% of Ag_2S (a) and 90.00 mol% of Ag_2S (b)

The endothermic effects recorded on the DTA curve (Fig. 3, sample comprising initially 90.00 mol% of Ag₂S) starting at 172 and at 389°C, correspond to the polymorphic transition of α -Ag₂S to β -Ag₂S [10] and melting β -Ag₈S₄O₄ [3, 4], respectively. The endothermic effect recorded at 427°C is associated with the polymorphic transition of Ag₂SO₄ [6,7]. This effect shows the presence of Ag₂SO₄ traces in the products of reaction. The presence of Ag₂SO₄ was not proved by XRD method. Ag₂SO₄ can appear, during DTA measurement, as a result of incongruent melting β -Ag₈S₄O₄. The exothermic effect starting at 553°C corresponds to the crystallization of metallic silver [4]. Metallic silver is a product of the thermal decomposition of a liquid obtained after melting β -Ag₈S₄O₄ [3, 4]. In air decomposition of β -Ag₈S₄O₄ starts at the melting point of this phase [3, 4]. The endothermic effect with its onset at 653°C is probably due to the melting traces of Ag₂Cr_{1-x}S_xO₄ solid solution. The presence of Ag₂Cr_{1-x}S_xO₄ solid solution.

Figure 4 shows the infrared absorption spectra for an equimolar mixture of Ag_2CrO_4 with Ag_2SO_4 , initial Ag_2S/Ag_2CrO_4 mixtures contained 20.00, 50.00 and 90.00 mol% of Ag_2S as well as the samples obtained after the last heating cycle of the Ag_2S/Ag_2CrO_4 mixtures mentioned above. As it is seen the spectra of the samples, obtained after heating Ag_2S/Ag_2SO_4 mixtures, show a general similarity with the spectrum of Ag_2CrO_4/Ag_2SO_4 mixture. Only absorption bands, recorded in the spectrum

Fig. 4 IR absorption spectra for: an equimolar mixture of Ag₂CrO₄ with Ag₂SO₄ (a); initial Ag₂S/Ag₂CrO₄ mixtures contained 20.00 (b), 50.00 (d) and 90.00 mol% of Ag₂S (f); the samples obtained after the final heating cycle of mixtures comprising initially 20.00 (c), 50.00 (e) and 90.00 mol% of Ag₂S (g)

of the sample obtained after heating the mixture comprising initially 90.00 mol% of Ag_2S , are very weak in comparison with the absorption bands for the remaining samples. The broad absorption bands, with the maximum at ~1100 cm⁻¹, can be assigned to the stretching mode of S–O bonds in isolated SO₄ tetrahedra [10–13]. The bands occurring at 616 cm⁻¹ are related to the stretching modes of O–S–O bonds in SO₄ tetrahedra [10–13]. In the light of literature information [14] the broad bands with maximum at 884 cm⁻¹ correspond to the stretching vibrations of Cr–O bonds in CrO₄ tetrahedra. Then the absorption bands occurring at ~400 cm⁻¹ can be due to the stretching modes of O–Cr–O in CrO₄ tetrahedra [14]. The simultaneous presence of absorption bands, which are related to the stretching modes S–O and O–S–O bonds in SO₄ tetrahedra as well as to the stretching vibrations of Cr–O bonds in CrO₄ tetrahedra, is due to a big difference between ion radii of S⁶⁺ and Cr⁶⁺ (ion radius of tetrahedrally coordinated S⁶⁺ – 12 pm; ion radius of tetrahedrally coordinated Cr⁶⁺ – 26 pm [15]).

Additionally, very weak bands at ~ 670 and at ~ 540 cm⁻¹ were recorded in the spectra of samples obtained after heating the mixtures comprising initially 20.00 and

50.00 mol% of Ag₂S. These bands can be assigned to the stretching mode of Cr–O bonds in CrO_6 octahedra, which form anion lattice of AgCrO₂ [16].

Conclusions

The experimental results obtained have led to the following conclusions:

– redox reaction of Ag_2S with Ag_2CrO_4 runs with an involvement of oxygen from air,

– at the concentration range from 10.00 to 90.00 mol% of Ag₂S in initial Ag₂S/Ag₂CrO₄ mixtures a presence of the solid solution with Ag₂CrO₄ structure (Ag₂Cr_{1-x}S_xO₄) was found.

References

- 1 J. Walczak, F. Boccuzzi and E. Łukaszczyk-Tomaszewicz, J. Alloy Compd., 224 (1995) 203.
- 2 M. Kurzawa and E. Tomaszewicz, Thermochim. Acta, 346 (2000) 161.
- 3 M. Kurzawa and E. Tomaszewicz, Mat. Res. Bull., 35 (2000) 637.
- 4 E. Tomaszewicz, PhD thesis, A. Mickiewicz University 1999, Poland.
- 5 M. L. Hackert and R. A. Jacobson, J. Solid State Chem., 3 (1971) 364.
- 6 G. Johansson and R. Lindner, Acta Chem. Scand., 4 (1950) 782.
- 7 G. Johansson, Arkiv Kemi, 8 (1954) 33.
- 8 M. Cieślak-Golonka, J. Thermal Anal., 38 (1992) 2501.
- 9 C. W. F. T. Pistorius and J. E. Krüger, Z. Anorg. Allg. Chem., 352 (1967) 222.
- 10 R. C. Sharma and Y. A. Chang, Bull. Alloy Phase Diagrams, 7 (1986) 263.
- 11 E. J. Baran and P. J. Aymonino, Spectrochim. Acta, 24A (1968) 228.
- 12 P. Dawson, M. M. Hargreave and G. R. Wilkinson, Spectrochim. Acta, 33A (1977) 83.

- 13 R. A. Durie and J. W. Milne, Spectrochim. Acta, 34A (1978) 215.
- 14 O. Muller, W. B. White and R. Ray, Spectrochim. Acta, 25A (1969) 1491.
- 15 R. D. Shannon, Acta Cryst., A32 (1976) 751.
- 16 R. G. Snyder and J. A. Ibers, J. Chem. Phys., 36 (1962) 1356.